Kernel regression uniform rate estimation for censored data under α-mixing condition
نویسندگان
چکیده
منابع مشابه
Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملUniform-in-bandwidth kernel estimation for censored data
We present a sharp uniform-in-bandwidth functional limit law for the increments of the Kaplan-Meier empirical process based upon right-censored random data. We apply this result to obtain limit laws for nonparametric kernel estimators of local functionals of lifetime densities, which are uniform with respect to the choices of bandwidth and kernel. These are established in the framework of conve...
متن کاملInverse regression estimation for censored data.
An inverse regression methodology for assessing predictor performance in the censored data setup is developed along with inference procedures and a computational algorithm. The technique developed here allows for conditioning on the unobserved failure time along with a weighting mechanism that accounts for the censoring. The implementation is nonparametric and computationally fast. This provide...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2010
ISSN: 1935-7524
DOI: 10.1214/08-ejs195